ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 105071
Темы:    [ Десятичная система счисления ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (углы и длины) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Логарифмические неравенства ]
Сложность: 5-
Классы: 10,11
В корзину
Прислать комментарий

Условие

Докажите, что первые цифры чисел вида 22n образуют непериодическую последовательность.

Решение

Рассмотрим окружность длины 1 как отрезок [0;1] с отождествленными концами. Тогда дробную часть f числа k*lg2 можно рассматривать как точку этой окружности. Первая цифра числа 2k управляется положением f относительно точек деления 0, lg 2, ..., lg 9. (Например, если 2k начинается с 7, то 7*10s<2k<8*10s для натурального s. Дробная часть числа k*lg 2 равна k*lg 2 - s, и она находится между lg 7 и lg 8.)

Предположим, что первые цифры чисел 22n повторяются с периодом k. Тогда при любом n дробные части чисел 2n*lg 2 и 2n+k*lg 2 попадают в один и тот же интервал окружности; длина любого из этих интервалов не превосходит lg 2 < 1/3.

Пусть на окружности отложены дробные части двух положительных чисел A и B; эти дробные части различны и не являются диаметрально удаленными точками окружности; длина меньшей из двух дуг, на которые эти точки делят окружность, равна x. Тогда, как легко показать непосредственно, длина одной из дуг, соединяющих дробные части чисел 2A и 2B, равна 2x. Пусть теперь дробные части чисел A и B лежат в одном интервале; рассмотрим пары 2A и 2B, 4A и 4B и т. д. Из сказанного выше следует, что на некотором шаге одна из дуг, соединяющих дробные части пары, станет больше 1/3, но меньше 2/3. Значит, эти дробные части принадлежат разным интервалам окружности. Применяя эти рассуждения к числам A=2n0*lg 2 и B= 2n0+k*lg 2, где n0 - некоторое фиксированное натуральное число, получаем противоречие с предположением о периодичности.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 62
Год 1999
вариант
Класс 11
задача
Номер 7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .