ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 105196
Темы:    [ Равносоставленные фигуры ]
[ Перегруппировка площадей ]
[ Разрезания на параллелограммы ]
Сложность: 5
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

а) Показать, что любой треугольник можно разрезать на несколько частей, из которых можно сложить прямоугольник;
б) показать, что любой прямоугольник можно разрезать на несколько частей, из которых можно сложить квадрат;
в) верно ли, что любой многоугольник можно разрезать на несколько частей, из которых можно сложить квадрат?

Подсказка

б) Докажите, что для любого прямоугольника существует параллелограмм, равносоставленный как ему, так и некоторому квадрату.
в) Разрежьте сначала многоугольник на треугольники. Каждый из них разрежьте на части, из которых можно сложить квадрат. Затем подумайте, как из нескольких квадратов получить один.

Решение

а) Равносоставленность любого треугольника и некоторого прямоугольника следует из рисунка ниже (прямая l на рисунке содержит среднюю линию треугольника).

б) Докажем сначала, что любой параллелограмм равносоставлен прямоугольнику, одна сторона которого равна основанию параллелограмма, а другая — его высоте. Если высота параллелограмма падает на его основание, то его нужно разрезать по высоте (см. рис.).
Если же она падает на продолжение основания, то тогда линиями, параллельными основанию, параллелограмм можно разрезать на параллелограммы, у которых высоты падают на основания. После этого каждый из полученных параллелограммов можно разрезать описанным выше способом (см. рисунок ниже). (Дотошный читатель сообразит, что последней оговорки можно было бы и не делать, поскольку всегда по крайней мере одна из высот параллелограмма падает на основание, а не на его продолжение; попробуйте доказать это самостоятельно.)
Теперь перейдем к доказательству основного утверждения пункта б). Для любого прямоугольника можно найти параллелограмм, у которого:
1) большая сторона равна большей стороне прямоугольника;
2) высота, опущенная на большую сторону, равна меньшей стороне прямоугольника;
3) меньшая сторона равна опущенной на нее высоте.
Способ построения такого параллелограмма приведен на рисунке ниже.
Согласно доказанному утверждению, этот параллелограмм равносоставлен как исходному прямоугольнику, так и квадрату со стороной, равной его меньшей стороне. Значит, исходный прямоугольник равносоставлен квадрату.
в) Докажем, что любой многоугольник можно разрезать на треугольники. Если многоугольник выпуклый, это очевидно — достаточно провести все диагонали из одной вершины. Если же он не выпуклый, то его можно разрезать на выпуклые, проведя продолжения всех его сторон. Согласно пунктам а) и б), каждый треугольник равносоставлен некоторому квадрату. Осталось доказать, что произвольные несколько квадратов можно разрезать на части, из которых можно сложить один квадрат. Как это сделать для двух квадратов, показано на рисунке нижу. Если квадратов больше двух, то проделав эту операцию с любыми двумя, мы уменьшим их количество на один. Повторяя ее, мы получим в конце концов один квадрат.

Ответ

Верно.

Замечания

Источник решения: книга "В.О.Бугаенко. Турниры им. Ломоносова. Конкурсы по математике. МЦНМО-ЧеРо. 1998"

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
год/номер
Номер 03
Дата 1980
задача
Номер 04

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .