ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108028
Темы:    [ Перегруппировка площадей ]
[ Медиана делит площадь пополам ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Точки M и N – середины противоположных сторон BC и AD выпуклого четырёхугольника ABCD. Диагональ AC проходит через середину отрезка MN. Докажите, что треугольники ABC и ACD равновелики.


Также доступны документы в формате TeX

Подсказка

Медиана разбивает треугольник на два равновеликих треугольника.


Также доступны документы в формате TeX

Решение

Пусть O – середина MN. Поскольку медиана разбивает треугольник на два равновеликих треугольника, то
   SACD = 2SACN = 2(SAON + SCON) = 2(SAOM + SCOM) = 2SAMC = SABC.


Также доступны документы в формате TeX

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4308
олимпиада
Название Турнир городов
Турнир
Номер 9
Дата 1987/1988
вариант
Вариант весенний тур, тренировочный вариант, 7-8 класс
Задача
Номер 2

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .