ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 109658
Темы:    [ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 4
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

В классе 33 человека. У каждого ученика спросили, сколько у него в классе тезок и сколько однофамильцев (включая родственников). Оказалось, что среди названных чисел встретились все целые от 0 до 10 включительно. Докажите, что в классе есть два ученика с одинаковыми именем и фамилией.

Решение

Объединим учеников в группы по фамилиям и в группы по именам (возможны группы, состоящие из одного человека – например, ученик без однофамильцев). Каждый войдет в две группы – по фамилии и по имени. Из условия задачи следует, что в классе ровно одиннадцать групп. Действительно, есть группы, состоящие из 1, 2, 11 человек, поэтому групп не меньше одиннадцати, но 1+2+...+11=66=2· 33 , т.е. мы уже сосчитали каждого ученика дважды, значит, больше групп нет.
Рассмотрим группу из одиннадцати человек (скажем, однофамильцев). Остальных групп, и, в частности, групп тезок, не более десяти. Поэтому какие-то двое из одиннадцати входят в одну группу тезок, т.е. у них одинаковы и имя, и фамилия.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1997
Этап
Вариант 5
Класс
Класс 9
задача
Номер 97.5.9.6

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .