ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 111893
Темы:    [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 2+
Классы: 6,7,8
В корзину
Прислать комментарий

Условие

У 2009 года есть такое свойство: меняя местами цифры числа 2009, нельзя получить меньшее четырехзначное число (с нуля числа не начинаются). В каком году это свойство впервые повторится снова?

Решение

В 2010, 2011, ..., 2019 годах и в 2021 году в номере года есть единица, и если её поставить на первое место, число заведомо уменьшится. Число 2020 можно уменьшить до 2002. А вот число 2022 нельзя уменьшить, переставляя цифры.

Ответ

в 2022 году.

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 2009
Класс
Класс 6
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .