ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116255
Темы:    [ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В 10 одинаковых кувшинов было разлито молоко – не обязательно поровну, но каждый оказался заполнен не более чем на 10%. За одну операцию можно выбрать кувшин и отлить из него любую часть поровну в остальные кувшины. Докажите, что не более чем за 10 таких операций можно добиться, чтобы во всех кувшинах молока стало поровну.


Решение

Отольём из каждого кувшина во все остальные по  1/10  от первоначального количества молока в данном кувшине. Тогда молоко из каждого кувшина распределится поровну, значит, и в каждом кувшине станет поровну.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2009/2010
Номер 31
вариант
Вариант осенний тур, сложный вариант, 8-9 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .