ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30386
Темы:    [ Периодичность и непериодичность ]
[ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Найдите последнюю цифру числа 250.


Решение

250 = (16)3·4.  6 в любой степени оканчивается на 6, поэтому 250 оканчивается той же цифрой, что  6·4 = 24.


Ответ

4.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 4
Название Делимость и остатки
Тема Теория чисел. Делимость
задача
Номер 029

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .