ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30427
Тема:    [ Связность и разложение на связные компоненты ]
Сложность: 2
Классы: 6,7
В корзину
Прислать комментарий

Условие

В стране Семёрка 15 городов, каждый из которых соединён дорогами не менее, чем с семью другими.
Докажите, что из каждого города можно добраться до любого другого (возможно, проезжая через другие города).


Решение

  Рассмотрим два произвольных города и предположим, что они не соединены путем, то есть такой последовательностью дорог, в которой начало очередной дороги совпадает с концом предыдущей. Каждый из этих двух городов по условию соединен не менее, чем с семью другими; при этом все упомянутые города различны – ведь если какие-то два из них совпадают, то есть путь, соединяющий исходные города.
  Таким образом, мы насчитали не менее 16 городов. Противоречие.

Источники и прецеденты использования

web-сайт
задача
книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 6
Название Графы-1
Тема Теория графов
задача
Номер 014

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .