ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57524
Темы:    [ Экстремальные свойства треугольника (прочее) ]
[ Теорема косинусов ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Рассмотрим все остроугольные треугольники с заданными стороной a и углом α.
Чему равен максимум суммы квадратов длин сторон b и c?


Решение

По теореме косинусов  b2 + c2 = a2 + 2bc cos α. Так как  2bcb2 + c2  и  cos α > 0,  то  b2 + c2a2 + (b2 + c2) cos α,  то есть
  Равенство достигается при  

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 11
Название Задачи на максимум и минимум
Тема Экстремальные свойства. Задачи на максимум и минимум.
параграф
Номер 1
Название Треугольник
Тема Экстремальные свойства треугольника (прочее)
задача
Номер 11.004

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .