ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58080
Темы:    [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Геометрия на клетчатой бумаге ]
[ Раскраски ]
Сложность: 3
Классы: 7,8
В корзину
Прислать комментарий

Условие

Узлы бесконечной клетчатой бумаги раскрашены в два цвета. Докажите, что существуют две горизонтальные и две вертикальные прямые, на пересечении которых лежат точки одного цвета.

Решение

Возьмем три вертикальные прямые и девять горизонтальных. Будем рассматривать только точки пересечения этих прямых. Так как имеется лишь 23 = 8 вариантов раскраски трех точек в два цвета, то найдутся две горизонтальные прямые, на которых лежат одинаково раскрашенные тройки точек. Среди трех точек, раскрашенных в два цвета, найдутся две одинаково раскрашенные точки. Вертикальные прямые, проходящие через эти точки, вместе с ранее выбранными двумя горизонтальными являются искомыми.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 21
Название Принцип Дирихле
Тема Принцип Дирихле
параграф
Номер 1
Название Конечное число точек, прямых и т.д.
Тема Принцип Дирихле (конечное число точек, прямых и т. д.)
задача
Номер 21.001

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .