ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60490
Темы:    [ НОД и НОК. Взаимная простота ]
[ Алгоритм Евклида ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Пусть  (a, b) = 1  и  a | bc.  Докажите, что  a | c.


Решение

Согласно задаче 60488  au + bv = 1  для некоторых целых u и v. Домножив это равенство на c, получаем равенство  acu + bcv = c.  Левая часть этого равенства делится на a, значит, на a делится и правая часть, то есть c.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 2
Название Алгоритм Евклида
Тема Алгоритм Евклида
задача
Номер 03.038

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .