ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64581
Темы:    [ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

a) Петя и Вася задумали по три натуральных числа. Петя для каждых двух своих чисел написал на доске их наибольший общий делитель. Вася для каждых двух из своих чисел написал на доске их наименьшее общее кратное. Оказалось, что Петя написал на доске те же числа, что и Вася (возможно в другом порядке). Докажите, что все написанные на доске числа равны.

б) Останется ли верным утверждение предыдущей задачи, если Петя и Вася изначально задумали по четыре натуральных числа?


Решение

  а) Пусть Петя и Вася написали числа a, b и c. Попарные наибольшие общие делители этих чисел равны: это наибольший общий делитель d трёх чисел, задуманных Петей. С другой стороны, каждый такой попарный делитель делится на одно из чисел, задуманных Васей. Значит, d делится и на наименьшее общее кратное задуманных Васей чисел, которое равно  НОК(a, b, c).  Следовательно,  НОК(a, b, c) = НОД(a, b, c),  то есть  a = b = c.

  б) Контрпример: если Петя задумал числа 6, 10, 15, 30, а Вася – числа 1, 2, 3, 5, то оба выпишут наборы 2, 3, 5, 6, 10, 15.


Ответ

б) Не останется.

Замечания

1. Более общий контрпример: у Васи – четыре попарно взаимно простых числа a, b, c, d, у Пети – abc, abd, acd, bcd; в итоге оба напишут ab, ac, ad, bc, bd, cd.   Вырожденный пример: у Васи – 1, 1, 1, 2, у Пети – 1, 2, 2, 2.

2. Баллы: 8-9 кл – 3 + 3, 10-11 кл. – 2 + 2.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 29
Дата 2007/2008
вариант
Вариант осенний тур, сложный вариант, 8-9 класс
задача
Номер 2
олимпиада
Название Турнир городов
Турнир
Номер 29
Дата 2007/2008
вариант
Вариант осенний тур, сложный вариант, 10-11 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .