ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64596
Темы:    [ Упорядочивание по возрастанию (убыванию) ]
[ Принцип крайнего (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Есть тридцать карточек, на каждой написано по числу: на десяти карточках – a, на десяти других – b, и на десяти оставшихся – c (числа a, b, c все разные). Известно, что к любым пяти карточкам можно подобрать еще пять так, что сумма чисел на этих десяти карточках будет равна нулю. Докажите, что одно из чисел a, b, c равно нулю.


Решение

Пусть  a < b < c.  Отметим на числовой оси всевозможные суммы чисел на пяти карточках. Для каждой из них отмечена и противоположная, поэтому отмеченные точки расположены симметрично относительно нуля. В частности, противоположны наибольшая (5с) и наименьшая (5а) суммы, значит,
5a + 5c = 0,  то есть  c = – a.  Противоположны и суммы, ближайшие к “крайним”:  (4a + b) + (4c + b) = 0.  Отсюда следует, что  b = 0.

Замечания

баллы: 8-9 кл. – 5, 10-11 кл. – 4

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 29
Дата 2007/2008
вариант
Вариант весенний тур, тренировочный вариант, 8-9 класс
задача
Номер 3
олимпиада
Название Турнир городов
Турнир
Номер 29
Дата 2007/2008
вариант
Вариант весенний тур, тренировочный вариант, 10-11 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .