ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64691
Темы:    [ Правильный (равносторонний) треугольник ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7
В корзину
Прислать комментарий

Условие

Автор: Акопян Э.

Петя утверждает, что он сумел согнуть бумажный равносторонний треугольник так, что получился четырёхугольник, причём всюду трёхслойный.
Как это могло получиться?


Решение

Разобьём треугольник на 9 равносторонних треугольников (см. рис.). Загнём "внутрь" части, отмеченные цветом, и получим шестиугольник.

Этот шестиугольник можно перегнуть по любой диагонали, соединяющей противоположные вершины, и получить трёхслойный четырёхугольник (трапецию).

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада для 6-7 классов
год/номер
Номер 12 (2014 год)
Дата 2014-03-16
класс
Класс 7 класс
задача
Номер 7.3

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .