ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64906
Темы:    [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Дан треугольник ABC. M – середина стороны BC, а P – проекция вершины B на серединный перпендикуляр к AC. Прямая PM пересекает сторону AB в точке Q. Докажите, что треугольник QPB равнобедренный.


Решение

Пусть точка D симметрична B относительно серединного перпендикуляра к AC, а T – точка пересечения AB и CD. Тогда ACBD – равнобокая трапеция, и, значит, треугольник BDT – равнобедренный (см. рис.). Так как прямая PM содержит среднюю линию этого треугольника, треугольник QPB тоже равнобедренный.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по геометрии
год
Год 2012
тур
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .