ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64955
Тема:    [ Свойства коэффициентов многочлена ]
Сложность: 3
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Докажите, что если в выражении  (x² – x + 1)2014  раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.


Решение 1

Найдём коэффициент при х в полученном многочлене. Подобные слагаемые с буквенной частью x образуются при перемножении 2014 одинаковых скобок следующим образом: в одной из скобок берется слагаемое  – x,  а в остальных скобках – слагаемое 1. Следовательно, коэффициент при х будет равен –2014.


Решение 2

Сумма коэффициентов полученного многочлена равна его значению при  x = 1,  то есть  (1 – 1 + 1)2014 = 1.  Но в этом многочлене коэффициент при x4028 и свободный член равны 1. Следовательно, должен быть хотя бы один отрицательный коэффициент.

Источники и прецеденты использования

олимпиада
Название Окружная олимпиада (Москва)
год
Год 2014
класс
Класс 10
задача
Номер 10.2

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .