ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64968
Темы:    [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Симметрия помогает решить задачу ]
[ Центральная симметрия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Около треугольника ABC описали окружность. A1 – точка пересечения с нею прямой, параллельной BC и проходящей через A. Точки B1 и C1 определяются аналогично. Из точек A1, B1, C1 опустили перпендикуляры на BC, CA, AB соответственно. Докажите, что эти три перпендикуляра пересекаются в одной точке.


Решение 1

Так как точка A1 симметрична A относительно серединного перпендикуляра к BC, то перпендикуляр, опущенный из A1 на BC симметричен высоте из AK. По теореме Фалеса он пересекает прямую OH (O – центр описанной окружности, H – ортоцентр треугольника ABC) в точке, симметричной H относительно O. Через эту же точку проходят два других перпендикуляра.


Решение 2

Пусть K, L и M – точки попарного пересечения прямых AA1, BB1и CC1 (см. рис.).

Поскольку KBCA – параллелограмм, а AC1CB – равнобокая трапеция, то  KA = BC = AC1,  ∠KAB = ∠ABC = ∠BAC1.  Таким образом, в равнобедренном треугольнике KAC1AB является биссектрисой, а следовательно, и высотой. Значит,  KC1AB || LM.  Аналогично доказывается, что LA1 и MB1 также являются высотами треугольника KLM. А три высоты треугольника пересекаются в одной точке.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2011
класс
Класс 8
задача
Номер 8.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .