ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65084
Темы:    [ Математическая логика (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Ромбы. Признаки и свойства ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

На доске нарисованы три четырёхугольника. Петя сказал: "На доске нарисованы по крайней мере две трапеции". Вася сказал: "На доске нарисованы по крайней мере два прямоугольника". Коля сказал: "На доске нарисованы по крайней мере два ромба". Известно, что один из мальчиков сказал неправду, а двое других – правду. Докажите, что среди нарисованных на доске четырёхугольников есть квадрат.


Решение

Трапеция – не параллелограмм. Поэтому, если Петя прав, то на доске нарисовано не больше одного параллелограмма, и Вася с Колей оба неправы. Но по условию неправду сказал только один человек. Следовательно, это Петя, а Вася и Коля сказали правду. Это значит, что по крайней мере один из трёх нарисованных на доске четырёхугольников одновременно является прямоугольником и ромбом, то есть квадратом.

Источники и прецеденты использования

олимпиада
Название Олимпиада имени Леонарда Эйлера (для 8 классов)
тур
Номер 3 (2011 год)
тур
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .