ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65453
Тема:    [ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Верно ли, что любое натуральное число можно умножить на одно из чисел 1, 2, 3, 4 или 5 так, чтобы результат начинался на цифру 1?


Решение

Числа, начинающиеся с 1, умножим на 1, с 2 или 3 – на 5, с 4 – на 3 (или на 4), остальные – на 2.


Ответ

Верно.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2015/16
Номер 37
вариант
Вариант осенний тур, базовый вариант, 8-9 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .