ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65697
Темы:    [ Теория множеств (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

В классе учится 23 человека. В течение года каждый ученик этого класса один раз праздновал день рождения, на который пришли некоторые (хотя бы один, но не все) его одноклассники. Могло ли оказаться, что каждые два ученика этого класса встретились на таких празднованиях одинаковое число раз? (Считается, что на каждом празднике встретились каждые два гостя, а также именинник встретился со всеми гостями.)


Решение

  Предъявим примеры, как такое могло произойти.

  Первый пример. Выстроим учеников по кругу. Предположим, что к каждому на день рождения пришли все одноклассники, кроме следующего за ним по часовой стрелке. Тогда каждые два ученика A и B встретились на всех празднованиях, кроме двух: того, на которое не пришёл A, и того, на которое не пришёл B. Значит, каждая пара учеников встретилась 21 раз.

  Второй пример. Выделим из класса двух учеников A и B. Пусть на день рождения к A пришли все одноклассники, кроме B, на день рождения к B пришёл только A, а на остальные дни рождения приходил только B. Тогда каждая пара, в которой нет B, встретилась только на дне рождения A, а все пары, содержащие B, встречались ровно по разу на остальных празднованиях. Итого, каждая пара встретилась ровно по разу.


Ответ

Могло.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Вариант 2015/2016
этап
Вариант 4
класс
Класс 9
задача
Номер 9.5

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .