ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65813
Темы:    [ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
[ Подобные треугольники (прочее) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Дан треугольник ABC. Точки M1, M2, M3 – середины сторон AB, BC и AC, a точки H1, H2, H3 – основания высот, лежащие на тех же сторонах.
Докажите, что из отрезков H1M2, H2M3 и H3M1 можно построить треугольник.


Решение

Указанные отрезки равны половинам сторон треугольника ABC (например, медиана H1M2 прямоугольного треугольника BH1C равна половине гипотенузы BC). Поэтому из них можно построить вдвое меньший треугольник, равный треугольнику M1M2M3.

Замечания

3 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 27
Дата 2005/2006
вариант
Вариант осенний тур, тренировочный вариант, 8-9 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .