ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66156
Темы:    [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Остроугольный равнобедренный треугольник ABC  (AB = AC)  вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC.


Решение

Пусть прямые AO и l пересекаются в точке T (см. рис.). Из симметрии относительно AO имеем  ∠B'TO = ∠C'TO = ∠OAC = ∠OCA = ∠B'CO,  то есть T лежит на окружности ω. Из аналогичных соображений  ∠OB'T = ∠OC'T = ∠OCA = ∠OTC',  то есть прямая TC' касается ω в точке T.

Замечания

Можно заметить, что O и T – центры окружностей, описанных около треугольника B'C'T и трапеции BCB'C' соответственно.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Вариант 2016/2017
этап
Вариант 5
класс
Класс 10
задача
Номер 10.2
олимпиада
Название Всероссийская олимпиада по математике
год
Вариант 2016/2017
этап
Вариант 5
класс
Класс 11
задача
Номер 11.2

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .