ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 77902
Тема:    [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Даны 3 окружности O1, O2, O3, проходящие через одну точку O. Вторые точки пересечения O1 с O2, O2 с O3 и O3 с O1 обозначим соответственно через A1, A2 и A3. На O1 берем произвольную точку B1. Если B1 не совпадает с A1, то проводим через B1 и A1 прямую до второго пересечения с O2 в точке B2. Если B2 не совпадет с A2, то проводим через B2 и A2 прямую до второго пересечения с O3 в точке B3. Если B3 не совпадет с A3, то проводим через B3 и A3 прямую до второго пересечения с O1 в точке B4. Докажите, что B4 совпадает с B1.

Решение

Пусть $ \angle$(AB, CD) — ориентированный угол между прямыми AB и CD. Тогда $ \angle$(A3O, A3B1) + $ \angle$(A3B3, A3O) = $ \angle$(A1O, A1B1) + $ \angle$(A2B3, A2O) = $ \angle$(A1O, A1B2) + $ \angle$(A2B2, A2O) = 0o, поэтому точки A3, B1 и B3 лежат на одной прямой. Значит, B4 = B1.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 13
Год 1950
вариант
Класс 7,8
Тур 1
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .