ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 79310
Темы:    [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Правильные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Арена цирка освещается n различными прожекторами. Каждый прожектор освещает некоторую выпуклую фигуру. Известно, что если выключить один произвольный прожектор, то арена будет по-прежнему полностью освещена, а если выключить произвольные два прожектора, то арена полностью освещена не будет. При каких значениях n это возможно?


Также доступны документы в формате TeX

Решение

Для  n = 2  это, очевидно, возможно. При  n > 2  впишем в арену правильный k-угольник, где  k = n(n−1)/2.  Тогда можно установить взаимно однозначное соответствие между сегментами, отсекаемыми сторонами k-угольника, и парами прожекторов. Пусть каждый прожектор освещает весь k-угольник и сегменты, соответствующие парам, в которые он входит. Легко проверить, что это освещение обладает требуемыми свойствами.


Также доступны документы в формате TeX

Ответ

При всех  n ≥ 2.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 38
Год 1975
вариант
Класс 10
Тур 2
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .