ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 79626
Темы:    [ Неравенства с площадями ]
[ Векторы помогают решить задачу ]
[ Площадь и ортогональная проекция ]
[ Скалярное произведение ]
[ Тетраэдр (прочее) ]
[ Правильный тетраэдр ]
Сложность: 5
Классы: 10,11
В корзину
Прислать комментарий

Условие

Внутри тетраэдра расположен треугольник, проекции которого на 4 грани тетраэдра имеют площади P1, P2, P3, P4. Докажите, что а) в правильном тетраэдре P1P2 + P3 + P4; б) если S1, S2, S3, S4 — площади соответствующих граней тетраэдра, то P1S1P2S2 + P3S3 + P4S4.

Решение

Заметим сначала, что задача а) является частным случаем задачи б). Поэтому мы будем решать задачу б). Пусть vi — вектор, перпендикулярный i-й грани тетраэдра, направленный внутрь тетраэдра и равный по модулю площади этой грани, p — вектор, перпендикулярный плоскости данного треугольника и равный по модулю его площади (один из двух). Тогда, по формуле для площади проекции многоугольника, PiSi = |(p, vi)|.
Лемма. v1 + v2 + v3 + v4 = 0.
Доказательство. Пусть v — некоторый вектор единичной длины, α — перпендикулярная ему плоскость. Тогда число (v, v1 + v2 + v3 + v4) равно сумме площадей проекций граней тетраэдра на плоскость α, где площадь берётся со знаком "+", если при проекции ориентация не меняется и со знаком "−" в противном случае. А эта сумма площадей равна нулю. Следовательно, для любого вектора v число (v, v1 + v2 + v3 + v4) равно нулю. А значит, v1 + v2 + v3 + v4 = 0.
Следовательно, P1S1 = |(p, v1)| = |(p, v2) + (p, v3) + (p, v3)| ≤ |(p, v2)| + |p, v3)| + |(p, v3)| = P2S2 + P3S3 + P4S4, что и требовалось доказать.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 55
Год 1992
вариант
Класс 11
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .