ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 86556
Темы:    [ Теория игр (прочее) ]
[ Инварианты ]
Сложность: 3-
Классы: 6,7,8
В корзину
Прислать комментарий

Условие

Игра с тремя кучками камней. Имеется три кучки камней: в первой — 10, во второй — 15, в третьей — 20. За ход разрешается разбить любую кучку на две меньшие части; проигрывает тот, кто не сможет сделать хода.

Решение

Всего имеется 45 камней. В итоге мы получим 45 кучек по одному камню. Для того, чтобы первую кучку разложить по одному камню, надо 9 ходов, для второй кучки понадобиться 14 ходов, для третьей — 19 ((число ходов не зависит от того, отделяем по одному камню или по несколько). Итак, число ходов 9+14+19=42 и это число не зависит от того какие ходы делают партнеры. Последний, четный ход делает второй и выигрывает.

Источники и прецеденты использования

кружок
Место проведения МЦНМО
класс
Класс 7
год
Год 2004/2005
занятие
Номер 18
Название Игры
Тема Теория игр
задача
Номер 18.4

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .