ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98392
Темы:    [ Геометрические интерпретации в алгебре ]
[ Метод координат на плоскости ]
[ Методы решения задач с параметром ]
[ Системы алгебраических нелинейных уравнений ]
[ Наглядная геометрия в пространстве ]
[ Правильные многогранники (прочее) ]
Сложность: 4-
Классы: 10,11
В корзину
Прислать комментарий

Условие

Положительные числа A, B, C и D таковы, что система уравнений
    x² + y² = A,
    |x| + |y| = B
имеет m решений, а система уравнений
    x² + y² + z² = C,
    |x| + |y| + |z| = D
имеет n решений. Известно, что  m > n > 1.  Найдите m и n.


Решение

  Первое уравнение есть уравнение окружности, второму удовлетворяют точки квадрата с центром в начале координат и с диагоналями, принадлежащими осям координат. Поэтому первая система в зависимости от A и B либо не имеет решений, либо имеет четыре решения, либо восемь. Итак, m может равняться либо 0, либо 4, либо 8.
  Первое уравнение второй системы есть уравнение сферы. Второму удовлетворяют точки октаэдра с центром в начале координат и с вершинами, лежащими на осях координат на равных расстояниях от центра. Эта система в зависимости от C и D либо не имеет решений, либо имеет 6 решений (вершины октаэдра лежат на сфере), либо имеет 8 решений (сфера касается граней октаэдра), либо имеет бесконечное число решений (сфера пересекает грани октаэдра по окружностям или нескольким дугам окружностей). Итак, n может равняться либо 0, либо 6, либо 8. Условию  m > n > 1  удовлетворяет только вариант  m = 8,  n = 6.


Ответ

m = 8,  n = 6.

Замечания

5 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1997/1998
Номер 19
вариант
Вариант весенний тур, тренировочный вариант, 10-11 класс
Задача
Номер 4

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .