Страница: 1 [Всего задач: 4]
Окружность касается сторон AB, BC, CD параллелограмма ABCD в точках K, L, M соответственно.
Докажите, что прямая KL делит пополам высоту параллелограмма, опущенную из вершины C на AB.
|
|
Сложность: 4- Классы: 8,9,10,11
|
По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.
|
|
Сложность: 4- Классы: 8,9,10
|
Три попарно непересекающиеся окружности ωx, ωy, ωz радиусов rx, ry, rz лежат по одну сторону от прямой t и касаются её в точках X, Y, Z соответственно. Известно, что Y – середина отрезка XZ, rx = rz = r, а ry > r. Пусть p – одна из общих внутренних касательных к окружностям ωx и ωy, а q – одна из общих внутренних касательных к окружностям ωy и ωz. В пересечении прямых p, q, t образовался неравнобедренный треугольник. Докажите, что радиус его вписанной окружности равен r.
Фиксированы две окружности w1 и w2,
одна их внешняя касательная l и
одна их внутренняя касательная m. На прямой m выбирается точка X, а на прямой L строятся точки
Y и Z так, что XY и XZ касаются w1 и w2
соответственно, а треугольник XYZ содержит
окружности w1 и w2.
Докажите, что центры окружностей, вписанных в треугольники XYZ, лежат
на одной прямой.
Страница: 1 [Всего задач: 4]