Страница: 1
2 >> [Всего задач: 8]
Задача
64804
(#9.1)
|
|
Сложность: 3+ Классы: 9,10
|
Пусть ABCD – вписанный четырёхугольник. Докажите, что AC > BD тогда и только тогда, когда (AD – BC)(AB – CD) > 0.
Задача
64805
(#9.2)
|
|
Сложность: 4- Классы: 9,10
|
В четырёхугольнике ABCD углы A и C – прямые. На сторонах AB и CD как на диаметрах построены окружности, пересекающиеся в точках X и Y. Докажите, что прямая XY проходит через середину K диагонали AC
Задача
64806
(#9.3)
|
|
Сложность: 4 Классы: 9,10
|
Дан острый угол с вершиной A и точка E внутри него. Построить на сторонах угла точки B, C так, чтобы E была центром окружности Эйлера треугольника ABC.
Задача
64807
(#9.4)
|
|
Сложность: 4+ Классы: 9,10
|
Ортоцентр H треугольника ABC лежит на вписанной в треугольник окружности.
Докажите, что три окружности с центрами A, B, C, проходящие через H, имеют общую касательную.
Задача
64808
(#9.5)
|
|
Сложность: 3+ Классы: 9,10
|
В треугольнике ABC ∠B = 60°, O – центр описанной окружности, BL – биссектриса. Описанная окружность треугольника BOL пересекает описанную окружность треугольника ABC вторично в точке D. Докажите, что BD ⊥ AC.
Страница: 1
2 >> [Всего задач: 8]