Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 123]
|
|
Сложность: 2+ Классы: 7,8,9
|
В музее Гугенхайм в Нью-Йорке есть скульптура, имеющая форму куба. Жук, севший на одну из вершин, хочет как можно быстрее осмотреть скульптуру, чтобы перейти к другим экспонатам (для этого достаточно попасть в противоположную вершину куба). Какой путь ему выбрать?
а) В каждой вершине куба написано число 1 или число 0. На каждой грани куба написана сумма четырёх чисел, написанных в вершинах этой грани. Может ли оказаться, что все числа, написанные на гранях, различны?
б) Тот же вопрос, если в вершинах написаны числа 1 или –1.
|
|
Сложность: 2+ Классы: 7,8,9
|
Миша написал на доске в некотором порядке 2004 плюса и 2005 минусов. Время от времени Юра подходит к доске, стирает любые два знака и пишет вместо них один, причём если он стёр одинаковые знаки, то вместо них он пишет плюс, а если разные, то минус. После нескольких таких действий на доске остался только один знак. Какой?
|
|
Сложность: 2+ Классы: 7,8,9
|
а) Из шахматной доски вырезали клетку a1. Можно ли то, что осталось, замостить доминошками 1×2?
б) Тот же вопрос, если вырезали две клетки a1 и h8.
в) Тот же вопрос, если вырезали клетки a1 и h1.
|
|
Сложность: 2+ Классы: 7,8,9
|
Сложите шесть спичек так, чтобы они образовали четыре равносторонних треугольника.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 123]