Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]
|
|
Сложность: 4 Классы: 8,9,10
|
2n шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).
Докажите, что если сумма очков каждого изменилась не менее чем на n, то она изменилась ровно на n.
|
|
Сложность: 4 Классы: 8,9,10
|
В круговом турнире не было ничьих, за победу присуждалось 1 очко, за
поражение – 0. Затем был определен коэффициент каждого участника. Он
равнялся сумме очков, набранных теми, кого победил данный спортсмен. Оказалось, что у всех участников коэффициенты равны. Число участников турнира больше двух. Докажите, что все спортсмены набрали одинаковое количество очков.
На сторонах
AB ,
BC и
AC треугольника
ABC взяты
точки
C' ,
A' и
B' соответственно. Докажите, что
площадь треугольника
A'B'C' равна
,
где
R – радиус описанной окружности треугольника
ABC .
|
|
Сложность: 4+ Классы: 8,9,10
|
Докажите, что среди четырехугольников с заданными длинами диагоналей и углом между ними наименьший периметр имеет параллелограмм.
|
|
Сложность: 4+ Классы: 10,11
|
Рассмотрим степени пятерки: 1, 5, 25, 125, 625, ... Образуем последовательность их первых цифр: 1, 5, 2, 1, 6, ...
Докажите, что любой кусок этой последовательности, записанный в обратном
порядке, встретится в последовательности первых цифр степеней двойки (1, 2, 4, 8, 1, 3, 6, 1, ...).
Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]