|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На плоскости расположено такое конечное множество точек M, что никакие три точки не лежат на одной прямой. Некоторые точки соединены друг с другом отрезками так, что из каждой точки выходит не более одного отрезка. Разрешается заменить пару пересекающихся отрезков AB и CD парой противоположных сторон AC и BD четырёхугольника ACBD. В полученной системе отрезков разрешается снова произвести подобную замену, и т. д. Может ли последовательность таких замен быть бесконечной? |
Страница: << 1 2 3 4 5 6 [Всего задач: 30]
На плоскости расположено такое конечное множество точек M, что никакие три точки не лежат на одной прямой. Некоторые точки соединены друг с другом отрезками так, что из каждой точки выходит не более одного отрезка. Разрешается заменить пару пересекающихся отрезков AB и CD парой противоположных сторон AC и BD четырёхугольника ACBD. В полученной системе отрезков разрешается снова произвести подобную замену, и т. д. Может ли последовательность таких замен быть бесконечной?
Набор чисел A1, A2, ..., A100 получен некоторой перестановкой из чисел 1, 2, ..., 100. Образуют сто чисел:
В правильном десятиугольнике проведены все диагонали. Возле каждой вершины и возле каждой точки пересечения диагоналей поставлено число +1 (рассматриваются только сами диагонали, а не их продолжения). Разрешается одновременно изменить все знаки у чисел, стоящих на одной стороне или на одной диагонали. Можно ли с помощью нескольких таких операций изменить все знаки на противоположные?
В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.
а) Квадрат разбит на прямоугольники. Цепочкой называется такое подмножество K множества этих прямоугольников, что существует сторона S квадрата, целиком закрытая проекциями прямоугольников из K, но при этом ни в какую точку S не проектируются внутренние точки двух прямоугольников из K (мы относим к прямоугольнику и его стороны). Доказать, что любые два прямоугольника разбиения входят в некоторую цепочку. б) Аналогичная задача для куба, разбитого на прямоугольные параллелепипеды (в определении цепочки нужно заменить сторону на ребро).
Страница: << 1 2 3 4 5 6 [Всего задач: 30] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|