ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 116641  (#10.4)

Темы:   [ Вневписанные окружности ]
[ Вспомогательная окружность ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

Автор: Шмаров В.

Периметр треугольника ABC равен 4. На лучах AB и AC отмечены точки X и Y так, что  AX = AY = 1.  Отрезки BC и XY пересекаются в точке M. Докажите, что периметр одного из треугольников ABM и ACM равен 2.

Прислать комментарий     Решение

Задача 116649  (#11.4)

Темы:   [ Задачи на движение ]
[ Выход в пространство ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Плоскость, разрезанная прямыми ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 10,11

По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.

Прислать комментарий     Решение

Задача 116634  (#9.5)

Темы:   [ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9,10

Для некоторых 2011 натуральных чисел выписали на доску все их 2011·1005 попарных сумм.
Могло ли оказаться, что ровно треть выписанных сумм делится на 3, и ещё ровно треть из них дают остаток 1 при делении на 3?

Прислать комментарий     Решение

Задача 116642  (#10.5)

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

Прислать комментарий     Решение

Задача 116650  (#11.5)

Темы:   [ Многочлен n-й степени имеет не более n корней ]
[ Неравенства. Метод интервалов ]
Сложность: 3+
Классы: 10,11

Даны два различных приведённых кубических многочлена F(x) и G(x). Выписали все корни уравнений  F(x) = 0,  G(x) = 0,  F(x) = G(x). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена F(x).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .