ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

x, y, z – натуральные числа, причём  x² + y² = z².  Докажите, что xy делится на 12.

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 559]      



Задача 30402  (#045)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

x, y, z – натуральные числа, причём  x² + y² = z².  Докажите, что xy делится на 12.

Прислать комментарий     Решение

Задача 30403  (#046)

Темы:   [ Делимость чисел. Общие свойства ]
[ Линейная и полилинейная алгебра ]
Сложность: 2+
Классы: 7,8,9

а)  a + 1  делится на 3. Докажите, что  4 + 7a  делится на 3.

б)  2 + a  и  35 – b  делятся на 11. Докажите, что  a + b  делится на 11.

Прислать комментарий     Решение

Задача 30404  (#047)

Темы:   [ Арифметика остатков (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8,9

Найдите последнюю цифру числа  1² + 2² + ... + 99².

Прислать комментарий     Решение

Задача 30405  (#048)

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9

Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из данных чисел делится на 5.

Прислать комментарий     Решение

Задача 30406  (#049)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
[ Средние величины ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 7,8,9

Докажите, что сумма n последовательных нечётных натуральных чисел при  n > 1  является составным числом.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .