ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется три кучки камней: в первой – 50, во второй – 60, в третьей – 70. Ход состоит в разбиении каждой кучки, состоящей более чем из одного камня, на две меньшие кучки. Выигрывает тот, после чьего хода во всех кучках будет по одному камню.

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 559]      



Задача 30457  (#025)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 7,8,9

На концах клетчатой полоски 1 × 20 стоит по шашке. За ход разрешается сдвинуть любую шашку в направлении другой на одну или на две клетки. Перепрыгивать шашкой через шашку нельзя. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение

Задача 30458  (#026)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4-
Классы: 8,9

В коробке лежит 300 спичек. За ход разрешается взять из коробка не более половины имеющихся в нем спичек. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 30459  (#027)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 8,9,10

Имеется три кучки камней: в первой – 50, во второй – 60, в третьей – 70. Ход состоит в разбиении каждой кучки, состоящей более чем из одного камня, на две меньшие кучки. Выигрывает тот, после чьего хода во всех кучках будет по одному камню.

Прислать комментарий     Решение


Задача 30460  (#028)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 8,9

Игра начинается с числа 60. За ход разрешается уменьшить имеющееся число на любой из его делителей. Проигрывает тот, кто получит ноль.

Прислать комментарий     Решение


Задача 30461  (#029)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4-
Классы: 8,9

Имеется две кучки спичек: а) 101 спичка и 201 спичка; б) 100 спичек и 201 спичка. За ход разрешается уменьшить количество спичек в одной из кучек на число, являющееся делителем количества спичек в другой кучке. Выигрывает тот, после чьего хода спичек не остается.

Прислать комментарий     Решение


Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .