ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны. РешениеНайдите число прямоугольников, составленных из клеток доски с m горизонталями и n вертикалями, которые содержат клетку с координатами (p, q). Решение |
Страница: << 5 6 7 8 9 10 11 [Всего задач: 55]
Сколькими способами можно разделить колоду из 36 карт пополам так, чтобы в каждой половине было по два туза?
Ладья стоит на левом поле клетчатой полоски 1×30 и за ход может сдвинуться на любое количество клеток вправо.
На каждом борту лодки должно сидеть по четыре человека. Сколькими способами можно выбрать команду для этой лодки, если есть 31 кандидат, причём десять человек хотят сидеть на левом борту лодки, двенадцать – на правом, а девяти безразлично где сидеть?
Найдите число прямоугольников, составленных из клеток доски с m горизонталями и n вертикалями, которые содержат клетку с координатами (p, q).
Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось. Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному?
Страница: << 5 6 7 8 9 10 11 [Всего задач: 55] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|