|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть M – конечное множество чисел. Известно, что среди любых трёх его элементов найдутся два, сумма которых принадлежит M. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1124]
Натуральные числа d и d' > d – делители натурального числа n. Докажите, что d' > d + d²/n.
Три натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске?
Пусть M – конечное множество чисел. Известно, что среди любых трёх его элементов найдутся два, сумма которых принадлежит M.
Даны многочлены P(x) и Q(x) десятой степени, старшие коэффициенты которых равны 1. Известно, что уравнение P(x) = Q(x) не имеет действительных корней. Докажите, что уравнение P(x + 1) = Q(x – 1) имеет хотя бы один действительный корень.
Существует ли такое положительное число α, что при всех действительных x верно неравенство |cos x| + |cos αx| > sin x + sin αx?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1124] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|