ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки A, B и C лежат на одной прямой, причём B находится между A и C.
Найдите геометрическое место таких точек M, что радиусы описанных окружностей треугольников AMB и CMB равны.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 56]      



Задача 57154  (#07.025)

Тема:   [ ГМТ и вспомогательные равные треугольники ]
Сложность: 5
Классы: 8,9

Даны окружность и точка P внутри ее. Через каждую точку Q окружности проведем касательную. Перпендикуляр, опущенный из центра окружности на прямую PQ, и касательная пересекаются в точке M. Найдите ГМТ M.
Прислать комментарий     Решение


Задача 55767  (#07.026)

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Гомотетия (ГМТ) ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 8,9

На окружности фиксированы точки A и B, а точка C движется по этой окружности. Найдите геометрическое место точек пересечения медиан треугольников ABC.

Прислать комментарий     Решение


Задача 57156  (#07.027)

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Гомотетичные многоугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Неравенства с площадями ]
Сложность: 4
Классы: 9,10

Дан треугольник ABC. Найдите множество центров прямоугольников PQRS, вершины Q и P которых лежат на стороне AC, вершины R и S — на сторонах AB и BC соответственно.
Прислать комментарий     Решение


Задача 57157  (#07.028)

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Гомотетичные окружности ]
[ ГМТ - окружность или дуга окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Гомотетия (ГМТ) ]
Сложность: 4
Классы: 9,10

Две окружности пересекаются в точках A и B. Через точку A проведена секущая, вторично пересекающаяся с окружностями в точках P и Q. Какую линию описывает середина отрезка PQ, когда секущая вращается вокруг точки A?
Прислать комментарий     Решение


Задача 57158  (#07.029)

Темы:   [ ГМТ - прямая или отрезок ]
[ Вписанные и описанные окружности ]
[ Ромбы. Признаки и свойства ]
[ Гомотетия (ГМТ) ]
[ Три точки, лежащие на одной прямой ]
[ Радиусы окружностей ]
[ Теорема синусов ]
Сложность: 3+
Классы: 9,10

Точки A, B и C лежат на одной прямой, причём B находится между A и C.
Найдите геометрическое место таких точек M, что радиусы описанных окружностей треугольников AMB и CMB равны.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .