ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Прасолов В.В., Задачи по планиметрии
>>
глава 30. Проективные преобразования
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что при центральном проектировании прямая, не являющаяся исключительной, проецируется в прямую. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]
а) через любые две точки проходит единственная прямая; б) любые две прямые, лежащие в одной плоскости, пересекаются в единственной точке; в) центральное проектирование одной плоскости на другую является взаимно однозначным отображением.
б) Докажите, что если точки A, B, C, D лежат па прямой, параллельной исключительной прямой проективного преобразования P плоскости , то P(A)P(B) : P(C)P(D) = AB : CD. в) Докажите, что если проективное преобразование P переводит параллельные прямые l1 и l2 в параллельные прямые, то либо P аффинно, либо его исключительная прямая параллельна прямым l1 и l2. г) Пусть P — взаимно однозначное преобразование множества всех конечных и бесконечных точек плоскости, которое каждую прямую переводит в прямую. Докажите, что P проективно.
а) Докажите, что существует проективное преобразование, переводящее точки A, B, C, D соответственно в точки A1, B1, C1, D1. б) Докажите, что преобразование задачи а) единственно, т. е. проективное преобразование плоскости определяется образами четырех точек в общем положении (ср. с задачей 30.4). в) Докажите утверждение задачи а), если точки A, B, C лежат на одной прямой l, а точки A1, B1, C1 — на одной прямой l1. г) Единственно ли преобразование задачи в)?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|