Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 51]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Каждая из функций $f(x)$ и $g(x)$ определена на всей числовой прямой и не является строго монотонной. Может ли быть, что и их сумма, и их разность строго монотонны на всей числовой прямой?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Точка $M$ – середина стороны $BC$ треугольника $ABC$. Окружность $\omega$ проходит через точку $A$, касается прямой $BC$ в точке $M$ и пересекает сторону $AB$ в точке $D$, а сторону $AC$ – в точке $E$. Пусть $X$ и $Y$ – середины отрезков $BE$ и $CD$ соответственно. Докажите, что окружность, описанная около треугольника $MXY$, касается $\omega$.
На клетчатой доске лежат доминошки, не касаясь даже углами. Каждая доминошка занимает две соседние (по стороне) клетки доски. Нижняя левая и правая верхняя клетки доски свободны. Всегда ли можно пройти из левой нижней клетки в правую верхнюю, делая ходы только вверх и вправо на соседние по стороне клетки и не наступая на доминошки, если доска имеет размеры
а) $100\times101$ клеток;
б) $100\times100$ клеток?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Петя и Вася по очереди красят рёбра $N$-угольной пирамиды: Петя – в красный цвет, а Вася – в зелёный (ребро нельзя красить дважды). Начинает Петя. Выигрывает Вася, если после того, как все рёбра окрашены, из любой вершины пирамиды в любую другую вершину ведёт ломаная, состоящая из зелёных рёбер. В противном случае выигрывает Петя. Кто из игроков может действовать так, чтобы всегда выигрывать, как бы ни играл его соперник?
|
|
Сложность: 4- Классы: 9,10,11
|
Точка $I$ – центр вписанной окружности треугольника $ABC$, а $T$ – точка касания этой окружности со стороной $AC$. Пусть $P$ и $Q$ – ортоцентры треугольников $BAI$ и $BCI$. Докажите, что точки $T$, $P$, $Q$ лежат на одной прямой.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 51]