ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.

   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 559]      



Задача 30593  (#007)

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 2+
Классы: 7,8,9

Найдите остаток от деления 6100 на 7.

Прислать комментарий     Решение

Задача 30594  (#008)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8

Докажите, что  3099 + 61100  делится на 31.

Прислать комментарий     Решение

Задача 30595  (#009)

Темы:   [ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 7,8,9

Докажите, что
  а)  43101 + 23101  делится на 66.
  б)  an + bn  делится на  a + b,  если n – нечётное число.

Прислать комментарий     Решение

Задача 30596  (#010)

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Докажите, что  1n + 2n + ... + (n – 1)n  делится на n при нечётном n.

Прислать комментарий     Решение

Задача 78198  (#011)

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.

Прислать комментарий     Решение

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .