ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Анджанс А.

Десятичные записи натуральных чисел выписаны подряд, начиная с единицы, до некоторого n включительно:   12345678910111213...(n).
Существует ли такое n, что в этой записи все десять цифр встречаются одинаковое количество раз?

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 64724  (#М1427)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Связность и разложение на связные компоненты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

В каждой клетке квадрата 8×8 клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть больше
  а) 15;
  б) 20?
  в) Может ли в аналогичной задаче про квадрат n×n клеток получиться больше чем n²/4 частей (для  n > 8)?

Прислать комментарий     Решение

Задача 98200  (#М1428)

Темы:   [ Десятичная система счисления ]
[ Индукция (прочее) ]
[ Последовательности (прочее) ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9,10

Автор: Анджанс А.

Десятичные записи натуральных чисел выписаны подряд, начиная с единицы, до некоторого n включительно:   12345678910111213...(n).
Существует ли такое n, что в этой записи все десять цифр встречаются одинаковое количество раз?
Прислать комментарий     Решение


Задача 64676  (#М1429)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Выпуклые многоугольники ]
[ Средние величины ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Доказательство от противного ]
[ Формула Эйлера. Эйлерова характеристика ]
Сложность: 4
Классы: 10,11

Выпуклый многоугольник разрезан на выпуклые семиугольники (так, что каждая сторона многоугольника является стороной одного из семиугольников). Докажите, что найдутся четыре соседние вершины многоугольника, принадлежащие одному семиугольнику.

Прислать комментарий     Решение

Задача 107757  (#М1442)

Темы:   [ Вспомогательные равные треугольники ]
[ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9,10

Две окружности пересекаются в точках A и B. В точке A к обеим проведены касательные, пересекающие окружности в точках M и N. Прямые BM и BN пересекают окружности еще раз в точках P и Q (P – на прямой BM, Q – на прямой BN). Докажите, что отрезки MP и NQ равны.

Прислать комментарий     Решение

Задача 98215  (#М1443)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Обыкновенные дроби ]
[ Обратный ход ]
[ Уравнения с модулями ]
Сложность: 4
Классы: 7,8,9

Бесконечная последовательность чисел xn определяется условиями:  xn+1 = 1 – |1 – 2xn|,  причём  0 ≤ x1 ≤ 1.
  а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда x1 рационально.
  б) Сколько существует значений x1, для которых эта последовательность – периодическая с периодом T (для каждого T = 2, 3, ...)?

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .