ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В некотором царстве живут маги, чародеи и волшебники. Про них известно следующее: во-первых, не все маги являются чародеями, во-вторых, если волшебник не является чародеем, то он не маг. Правда ли, что не все маги -- волшебники? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 133]
Внутри выпуклого многоугольника расположены две точки.
На плоскости дано n>4 точек. Известно, что любые 4 из них являются вершинами выпуклого четырехугольника. Докажите, что эти n точек являются вершинами выпуклого n-угольника.
На плоскости дано n точек, причем любые четыре
из них являются вершинами выпуклого четырехугольника.
Докажите, что эти точки являются вершинами выпуклого n-угольника.
На плоскости дано пять точек, причем никакие три из
них не лежат на одной прямой. Докажите, что четыре из этих
точек расположены в вершинах выпуклого четырехугольника.
На плоскости взяты
несколько точек так, что на каждой прямой, соединяющей любые две
из них, лежит по крайней мере еще одна точка. Докажите, что все
точки лежат на одной прямой.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 133]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке