ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На столе лежит колода из 36 карт, верхняя из которых червонный туз. За одно «перемешивание» фокусник снимает верхнюю половину колоды и кладёт рядом с нижней, а затем делает так, чтобы карты двух стопок чередовались: сначала нижняя карта левой или правой стопки, потом первая снизу другой стопки, потом вторая снизу карта первой стопки, вторая снизу карта другой стопки, и так далее (см. рисунок).

Какое наименьшее число перемешиваний нужно сделать фокуснику, чтобы червонный туз оказался нижней картой колоды? При каждом перемешивании то, из какой половины карта окажется снизу, фокусник выбирает сам.

Вниз   Решение


а) Докажите, что при n>4 любой выпуклый n -угольник можно разрезать на n тупоугольных треугольников. б) Докажите, что при любом n существует выпуклый n -угольник, который нельзя разрезать меньше, чем на n тупоугольных треугольников. в) На какое наименьшее число тупоугольных треугольников можно разрезать прямоугольник?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 416]      



Задача 109463

Тема:   [ Тождественные преобразования ]
Сложность: 3-
Классы: 7,8,9

Числа a, b и c отличны от нуля и выполняются равенства:  a + b/c = b + c/a = c + a/b = 1.  Докажите, что  ab + bc + ca = 0.

Прислать комментарий     Решение

Задача 116148

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3-
Классы: 7,8,9

Существуют ли такие целые числа x, y и z, для которых выполняется равенство:  (x – y)³ + (y – z)³ + (z – x)³ = 2011?

Прислать комментарий     Решение

Задача 61000

 [Схема Горнера]
Темы:   [ Тождественные преобразования ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3
Классы: 8,9,10,11

Значение многочлена  Pn(x) = anxn + an–1xn–1 + ... + a1x + a0    (an ≠ 0)  в точке  x = c  можно вычислить, используя ровно n умножений. Для этого нужно представить многочлен Pn(x) в виде  Pn(x) = (...(anx + an–1)x + ... + a1)x + a0.   Пусть  bn, bn–1, ..., b0  – это значения выражений, которые получаются в процессе вычисления Pn(c), то есть  bn = anbk = cbk+1 + ak  (k = n – 1, ..., 0).  Докажите, что при делении многочлена Pn(x) на  x – c  с остатком, у многочлена в частном коэффициенты будут совпадать с числами  bn–1, ..., b1,  а остатком будет число b0. Таким образом, будет справедливо равенство:
Pn(x) = (x – c)(bnxn–1 + ... + b2x + b1) + b0.

Прислать комментарий     Решение

Задача 61261

Тема:   [ Тождественные преобразования ]
Сложность: 3
Классы: 8,9,10

Докажите, что   (a² + b² + c² – ab – bc – ac)(x² + y² + z² – xy – yz – xz) = X² + Y² + Z² – XY – YZ – XZ,

если   X = ax + cy + bz,   Y = cx + by + az,   Z = bx + ay + cz.

Прислать комментарий     Решение

Задача 65510

Тема:   [ Тождественные преобразования ]
Сложность: 3
Классы: 8,9

Известно, что  a² + b = b² + c = c² + a.  Какие значения может принимать выражение  a(a² – b²) + b(b² – c²) + c(c² – a²)?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .