ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 590]      



Задача 30884

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9

Докажите неравенство   ¼ a² + b² + c² ≥ ab – ac + 2bc  при любых a, b, c.

Прислать комментарий     Решение

Задача 30889

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9

a, b, c ≥ 0.  Докажите, что  2(a³ + b³ + c³) ≥ a²b + ab² + a²c + ac² + b²c + bc².

Прислать комментарий     Решение

Задача 30892

Темы:   [ Алгебраические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 6,7

Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).

Прислать комментарий     Решение

Задача 30895

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 8

Докажите, что при  n ≥ 3  выполняется неравенство  

Прислать комментарий     Решение

Задача 30896

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8

n – натуральное число. Докажите, что  

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .