ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 109]      



Задача 66318

Темы:   [ Ортоцентр и ортотреугольник ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Средняя линия треугольника ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

В остроугольном треугольнике ABC проведены высоты BB', CC'. Через A и C' проведены две окружности, касающиеся BC в точках P и Q.
Докажите, что точки A, B', P, Q лежат на одной окружности.

Прислать комментарий     Решение

Задача 111265

Темы:   [ Неравенства с площадями ]
[ Удвоение медианы ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Средняя линия трапеции ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10

В треугольнике ABC точка D – середина стороны AB . Можно ли так расположить точки E и F на сторонах AC и BC соответственно, чтобы площадь треугольника DEF оказалась больше суммы площадей треугольников AED и BFD ?
Прислать комментарий     Решение


Задача 66219

Темы:   [ Вписанные и описанные окружности ]
[ Подерный (педальный) треугольник ]
[ Симметрия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Автор: Рябов П.

Касательные к описанной окружности треугольника ABC в точках A и B пересекаются в точке D. Окружность, проходящая через проекции D на прямые BC, CA, AB, повторно пересекает AB в точке C'. Аналогично строятся точки A', B'. Докажите, что прямые AA', BB', CC' пересекаются в одной точке.

Прислать комментарий     Решение

Задача 108138

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Гомотетия помогает решить задачу ]
[ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Центральная симметрия помогает решить задачу ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 5-
Классы: 9,10,11

Пусть A' – точка касания вневписанной окружности треугольника ABC со стороной BC. Прямая a проходит через точку A' и параллельна биссектрисе внутреннего угла A. Аналогично строятся прямые b и c. Докажите, что прямые a, b и c пересекаются в одной точке.

Прислать комментарий     Решение

Задача 65053

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Удвоение медианы ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Точка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что  BL = СМ.  Докажите, что треугольник LMK – также прямоугольный равнобедренный.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 109]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .