ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В стране n городов. Между каждыми двумя из них проложена либо автомобильная, либо железная дорога. Турист хочет объехать страну, побывав в каждом городе ровно один раз, и вернуться в город, с которого он начинал путешествие. Докажите, что турист может выбрать город, с которого он начнет путешествие, и маршрут так, что ему придётся поменять вид транспорта не более одного раза. Решение |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 201]
Рассматриваются 2000 чисел: 11, 101, 1001, ... . Докажите, что среди этих чисел не менее 99% составных.
Найдите все такие простые числа p и q , что p + q = (p – q)³.
Для натурального n > 3 будем обозначать через n? (n-вопросиал) произведение всех простых чисел, меньших n. Решите уравнение n? = 2n + 16.
В задаче 60477 были определены числа Евклида. Встретится ли каждое простое число в качестве сомножителя некоторого числа Евклида en?
Докажите, что для простого p (p – 1)! ≡ – 1 (mod p).
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 201] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|