Страница:
<< 16 17 18 19 20 21 22 [Всего задач: 109]
|
|
Сложность: 3+ Классы: 8,9,10
|
Хулиганы Джей и Боб на уроке черчения нарисовали головастиков
(четыре окружности на рисунке - одного радиуса, треугольник - равносторонний,
горизонтальная сторона этого треугольника - диаметр окружности). Какой из
головастиков имеет бо'льшую площадь?
Пусть I и IA – соответственно центры вписанной и вневписанной окружностей треугольника ABC. Прямая lA проходит через ортоцентры треугольников BIC и BIAC. Аналогичным образом определяются прямые lB и lC . Докажите, что прямые lA, lB и lC пересекаются в одной точке.
Дан параллелограмм ABCD с углом A, равным 60°. Точка O – центр описанной окружности треугольника ABD. Прямая AO пересекает биссектрису внешнего угла C в точке K. Найдите отношение AO : OK.
|
|
Сложность: 5 Классы: 9,10,11
|
Окружности σB, σC – вневписанные для треугольника ABC (касаются соответственно сторон
AC и AB и продолжений двух других сторон). Окружность ωB симметрична σB относительно середины стороны AC, окружность ωC симметрична σC относительно середины стороны AB. Докажите, что прямая, проходящая через точки пересечения окружностей ωB и ωC, делит периметр треугольника ABC пополам.
Страница:
<< 16 17 18 19 20 21 22 [Всего задач: 109]