В каждую клетку доски $8\times 8$ вписано натуральное число так, что выполнено условие: если из одной клетки в другую можно перейти одним ходом коня, то отношение чисел в этих двух клетках является простым числом. Могло ли оказаться, что в какую-то клетку вписано число $5$, а в какую-то другую – число $6$?Решение
Найдите высоту трапеции, у которой основания равны a и b
(a < b), угол между диагоналями равен
90o, а угол
между продолжениями боковых сторон равен
45o.