Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 138]
|
|
Сложность: 4- Классы: 8,9,10
|
Алиса и Базилио играют в следующую игру; из мешка,
первоначально содержащего 1331 монету, они по очереди берут монеты, причем
первый ход делает Алиса и берет 1 монету, а далее при каждом следующем ходе
игрок берет (по своему усмотрению) либо столько же монет, сколько взял другой
игрок последним ходом, либо на одну больше. Проигрывает тот, кто не может
сделать очередной ход по правилам. Кто из игроков может обеспечить себе выигрыш
независимо от ходов другого?
Что больше:
а) 1/101 + 1/102 + ... + 1/199 + 1/200 или 1/2 ?
б) 1/2·3/4·5/6·...·97/98·99/100 или 1/10 ?
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что сумма всех чисел вида 1/mn, где m и n – натуральные числа, 1 < m < n < 1986, не является целым числом.
|
|
Сложность: 4- Классы: 8,9,10
|
Найдите сумму
|
|
Сложность: 4 Классы: 10,11
|
Дано 16 кубов с длинами рёбер соответственно 1, 2, ..., 16. Разделите их на две группы так, чтобы в обеих группах были равны суммарные объёмы, суммы площадей боковых поверхностей, суммы длин рёбер и количество кубов.
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 138]